## **Chapter 6 Digital**

## **6.1 Introduction**

Digital systems are the language of computers and microprocessor hardware. A basic understanding of the principals associated with digital systems are presented.

## 6.2 Binary (Digital) Systems

#### 6.2.1 Number Systems

#### **Decimal numbers**

 $7392_{10} = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$ 

When using numbers, we usually write only the coefficient and let the position indication the power of 10. The coefficient range = 0-9 for base 10

#### **Binary numbers**

The coefficient range = 0-1 for base 2

 $1010_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10_{10}$ 

#### **Octal numbers**

Octals are simply binary numbers combined into groups of 3 (base  $8=2^3$ )

 $8 = 2^3 = 1 |001 = 12_8$ 

The coefficient range for octal numbers is 0-7

## Hexadecimal numbers

Hexadecimal numbers are binary numbers that are combined into groups of 4 (base  $16 = 2^4$ )

 $16 = 2^4 = 0 | 1010 = 0A_{16}$ 

The range for hexadecimal numbers is 0-F.

| <u>Hex #</u> | <u>Decimal Equiv</u> | <u>Hex #</u> | <u>Decimal Equiv</u> |
|--------------|----------------------|--------------|----------------------|
| 0            | 1                    | 8            | 9                    |
| 1            | 2                    | 9            | 10                   |
| 2            | 3                    | А            | 11                   |
| 3            | 4                    | В            | 12                   |
| 4            | 5                    | С            | 13                   |
| 5            | 6                    | D            | 14                   |
| 6            | 7                    | E            | 15                   |
| 7            | 8                    | F            | 16                   |

#### Arithmetic

Arithmetic rules for all bases have the same basic set of rules.

|          |            |             |            |                | 111                                                                                           |
|----------|------------|-------------|------------|----------------|-----------------------------------------------------------------------------------------------|
| Addition | 111<br>101 | Subtraction | 111<br>101 | Multiplication | <u>101</u><br>111                                                                             |
|          | 1100       |             | 010        | ·              | $     \begin{array}{r}       000 \\       \underline{111} \\       100011     \end{array}   $ |

## Decimal to Binary Equivalence

| 0 = 0000 | 5 = 0101 |
|----------|----------|
| 1 = 0001 | 6=01101  |
| 2 = 0010 | 7 = 0111 |
| 3 = 0011 | 8=1000   |
| 4 = 0100 | 9=1001   |

#### **6.2.2 Binary System Wiring**

#### **Equivalent Names**

5V = 1 = high = True = on = closed

0V = 0 = low = False = off = open

#### Resistors

```
Pull-up – from power source –
2.2KΩ
```

Current limiting – in series with load  $330\Omega$ 

## Switch

When switch = open, output = 1 (True) When switch = closed, output = 0 (False) Called an inverting switch



## Transistor

Simply a digital switch with an electrical input (inverter)

When base switch = off, output = 1 (True)

When base switch = on, output = 0 (False)



### Output – LED

Generally connected to ground

Use current limiting resistor

LED Long leg is the ground

This is a common cathode arrangement. A common anode would have inverted diodes



TTL

- Standard Arrangement
- 5V Power, VCC, on upper right pin
- Ground on lower left pin
- Notch at top



#### Problem:

Wire a switch circuit with an LED connected to the output pin.

#### **6.2.3 The Huntington Postulates**

Required entities to define an algebra:

A defined group of coefficients (R, N, Q, Z [0,1]), Real Natural, Complex Binary

A defined group of operators and a table which defines how each operator works.

A defined group of axioms or postulates (unproven theorems) from which new theorems, lemmas, corollaries, and propositions may be constructed.

[0,1] = B (coefficients) OR AND NOT  $\begin{array}{c|ccc}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1
\end{array}$ 0 1 0 0 0 0 1 0 1 0 1 For all *x*.*y* elements of group *B*: for each operator P1 (a)  $x + y \in B$ (b)  $x^* y \in B$  (closure) only 1 or 0 P2 (a) x + 0 = x (add Identity, I=0) (b) x \* 1 = x (multiply Identity, I=1) P3 (a) x + y = y + x(b)  $x^* y = y^* x$  (commutative) x + (y \* z) = (x + y) \* (x + z)P4 (a)  $x^{*}(y+z) = (x^{*}y) + (x^{*}z)$ (b) (distributive) P5 (a) x + x' = 1(b) x \* x' = 0 (complement, unique) P6 (a) *B* contains at least 2 distinct elements

Useful theorems: listed in pairs that have correspondence – duality – every expression is valid if operator and identity elements are changed. To find the dual, exchange + to \* and 1 to 0.

| T1 (a) $x + x = x$                 | (b) $x * x = x$                           |
|------------------------------------|-------------------------------------------|
| T2 (a) $x+1=1$                     | (b) $x * 0 = 0$                           |
| T3 (a) $(x')' = x$ (involution)    |                                           |
| T4 (a) $x + (y + z) = (x + y) + z$ | (b) $x(yz) = (xy)z$ (associative)         |
| an's Theorem – complement fun      | ction by interchanging AND & OB operators |

DeMorgan's Theorem – complement function by interchanging AND & OR operators and complementing each literal

| T5 (a) $(x+y)' = x'y'$   | (b) $(x^*y)' = x' + y'$       |
|--------------------------|-------------------------------|
| T6 (a) $x + xy = x$      | (b) $x(x+y) = x$ (absorption) |
| T7 (a) $x + x'y = x + y$ | (b) $x(x' + y) = xy$          |

Operator Precedence

Parentheses () Not

AND

OR

Complement – take dual and complement each literal

## 6.2.4 Basic Digital Gates





NOR



Or Invert





XAND



Invert And

A one input gate acts like an inverter

To use NAND requires Sum of Products (SOP) form

To use NOR requires Product of Sums (POS) form

## 6.3 Karnaugh Maps

| Definitions:   |                                                                       |                                                                                                                                                                                                                                    |
|----------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Literal        | a variable of t                                                       | he problem                                                                                                                                                                                                                         |
| Don't Care     | Output values they do, can b                                          | for which no value is necessary (situations that never occur, or if e ignored                                                                                                                                                      |
| SOP            | Abbreviation f                                                        | or Sum of Product                                                                                                                                                                                                                  |
| POS            | Abbreviation f                                                        | or Product of Sum                                                                                                                                                                                                                  |
| Reflected Code | A binary code<br>are the reflect<br>MSB of the fir:<br><b>Example</b> | which has the property that the codes following every $2^{n-1}$ codes<br>tion of the first $2^{n-1}$ codes in all bits except the most significant. The<br>st $2^{n-1}$ is a zero, and the MSB of the next $2^{n-1}$ codes is a 1. |
|                | Binary Code                                                           | Reflected Code                                                                                                                                                                                                                     |
|                | 00                                                                    | 00                                                                                                                                                                                                                                 |
|                | 01                                                                    | 01                                                                                                                                                                                                                                 |
|                | 10                                                                    | 11                                                                                                                                                                                                                                 |
|                | 11                                                                    | 10                                                                                                                                                                                                                                 |

#### PURPOSE:

A method of realizing a function in either of the two standard forms such that the number and complexity of terms in the function is minimal.

#### Construction:

- Draw a square or rectangular figure allowing 2<sup>*n*</sup> squares (for a problem with n variables).
- The table should be drawn so that there are  $2^x$  rows and  $2^y$  columns where x + y = n.
- Label the rows and columns with reflected code from left to right and top to bottom.
- Fill in each square of the map with its corresponding truth table function value.

#### Simplification:

- Circle the largest contiguous binary  $(2^w, w \le n)$  group of 1's for SOP (0's for POS) which is rectangular or square
- Consider all the edges of the map to be physically adjacent.
- Each circled block of 1's (0's) corresponds to one SOP (POS) term. The term is extracted by observing which literals <u>do not change</u> for the block. These can be complemented to create the POS terms using 0's. The literals are then AND'ed (OR'ed) together to realize the function.
- Finally, each term, which corresponds to each rectangular block, is OR'ed (AND'ed) together to realize the function
- Each 1 (0) in the map must be circled at least once to realize the function. (Sometimes there is more than one way to do it).
- <u>Additional Rule for Don't Cares:</u> It is not required that don't cares be circled, but treat them as 1 (0) if it will help with minimization.

### 6.3.1 Construction / Simplification of Karnaugh Maps:

## Example 1:

| А | В | F | В | 0      | 1 |               |
|---|---|---|---|--------|---|---------------|
| 0 | 0 | 0 | А |        |   | =AB'+A'B      |
| 0 | 1 | 1 | 0 | 0      | 1 | =(A+B)(A'+B') |
| 1 | 0 | 1 | 1 | (1)    | 0 |               |
| 1 | 1 | 0 |   | $\sim$ |   |               |

Example 2:

| А | В | F | В | 0 | 1 |           |
|---|---|---|---|---|---|-----------|
| 0 | 0 | 1 | А |   |   |           |
| 0 | 1 | 1 | 0 | Æ | 1 | =A'+B'    |
| 1 | 0 | 1 | 1 | 1 | 0 | = A' + B' |
| 1 | 1 | 0 |   |   |   |           |

#### Example 3:

| А | В | F | В | 0 | 1      |               |
|---|---|---|---|---|--------|---------------|
| 0 | 0 | 1 | А |   |        | =A'B'+AB      |
| 0 | 1 | 0 | 0 | 1 | 0      | =(A+B')(A'+B) |
| 1 | 0 | 0 | 1 | 0 | (1)    |               |
| 1 | 1 | 1 |   |   | $\sim$ |               |

Example 4:

| А | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

$$\begin{array}{c|cccc} C & 0 & 1 \\ AB & & \\ \hline 00 & 0 & (1) \\ \hline 01 & 0 & (1) \\ \hline 11 & (1) & 1 \\ 10 & 1 & 0 \end{array} = A'B'C + BC + AC' \\ = (A+C)(A'BC')$$

| С  | 0 | 1            |
|----|---|--------------|
| AB |   |              |
| 00 | 0 | (1)          |
| 01 | 0 | $\mathbb{O}$ |
| 11 |   |              |
| 10 | 1 | 0            |

Eliminate Races - Overlap F = A'C + BC + AB + AC' (SOP)

#### Example 5:

- $F = \Sigma(0,1,3,4,6,7) + \Pi(2,5) \qquad \qquad F = \Sigma(0,1,3,4,6,7)$
- Α B C F 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1
- 1 0 0 1
- 1 0 1 0 1 1 0 1
- 1 1 1 1

 $F = \Pi(2,5)$ 

| С  | 0   | 1                   |
|----|-----|---------------------|
| AB |     |                     |
| 00 | 1   | 1                   |
| 01 | 0   | $\langle 1 \rangle$ |
| 11 | (1) | 1                   |
| 10 | 1   | 0                   |

| 1 | С  | 0          | 1          |
|---|----|------------|------------|
|   | AB |            |            |
|   | 00 | 1          | 1          |
|   | 01 | $\bigcirc$ | 1          |
|   | 11 | 1          | 1          |
|   | 10 | 1          | $\bigcirc$ |

| С  | 0                | 1   |
|----|------------------|-----|
| AB |                  |     |
| 00 | 1                |     |
| 01 | 0                | (1) |
| 11 | (1)              | 1   |
| 10 | $\left 1\right $ | 0   |

| С  | 0              | 1   |   |
|----|----------------|-----|---|
| AB |                |     |   |
| 00 | 1              | (1) |   |
| 01 | 0              | 1/  |   |
| 11 | A              | 1   | þ |
| 10 | $\overline{1}$ | 0   |   |

F = (A + B' + C)(A + B + C')(POS)F = A'B' + BC + AC' + A'C (SOP)

F = B'C' + A'C + AB(SOP)

| С  | 0                | 1                |
|----|------------------|------------------|
| AB |                  | (                |
| 00 | E                | $\left(1\right)$ |
| 01 | 0                | $\square$        |
| 11 |                  | D                |
| 10 | $\left 1\right $ | 0                |

Eliminate Races  $F = A'B' + A'C + AB + BC + AC' \quad (SOP)$ 

## 6.4 Design w/ Multiplexer

| Multiplexers | are | a mixed | bag |
|--------------|-----|---------|-----|
|--------------|-----|---------|-----|

| Designers try to minimize gates | good |
|---------------------------------|------|
| Do clever things                | good |
| Results are not logical         | bad  |
| Hard to troubleshoot            | bad  |

Use multiplexer to show sequence of states

3 level pattern

#1 - multiplexers that determine the next state of registers

- #2 Register that holds present binary state
- #3 Decoder that provides a separate output for each control state

Put "Select" line across top of Karnaugh map

With "C" Select

With "A" Select

| С  | 0   | 1 |
|----|-----|---|
| AB |     |   |
| 00 | 0   | 0 |
| 01 |     | 1 |
| 11 | (1) | 0 |
| 10 | \1/ | 0 |

| F = A'B + AC' + BC'  |
|----------------------|
| F' = A'B' + AC + B'C |

| Select = C            |
|-----------------------|
| $I_0 = AB + AB + AB'$ |
| $I_1 = A'B$           |

| А  | 0   | 1 |
|----|-----|---|
| BC |     |   |
| 00 | 0   | 1 |
| 01 | 0   | 0 |
| 11 | (1) | 0 |
| 10 |     | A |

F = A'B + B'C + AC'F' = A'B' + B'C + AC

| Select = A |
|------------|
| $I_0 = B$  |
| $I_1 = C'$ |

## Three different implementations of the same function.

A valve header requires the following logic to control its actions:

 $F = \Sigma(2,3,4,6)$ 

 $=\Pi(0,1,5,7)$ 

| А | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

#### For 8:1 Multiplexer



|   | BC | 00        | 01  | 11             | 10            |
|---|----|-----------|-----|----------------|---------------|
| А |    |           |     |                | -             |
| 0 |    | 0 0       | 0 1 | $(1)^3$        | ( <b>1</b> )² |
| 1 |    | $(1)_{t}$ | 0 5 | 0 <sup>7</sup> | $\bigcirc$    |

#### For 4:1 Multiplexer



|   | BC | 00   | 01  | 11      | 10                       |   |
|---|----|------|-----|---------|--------------------------|---|
| А |    |      |     |         |                          | ļ |
| 0 |    | 0 0  | 0 1 | $1^{3}$ | 12                       |   |
| 1 |    | (1)⁴ | 0 5 | 0 7     | <u>م</u> 1/ <sup>6</sup> |   |
| Е |    | 0    | 1   | 3       | 2                        | ſ |

#### B & C are select

∴ Do not cross areas of constant BC

#### For 2:1 Multiplexer

#### Need A&B Input



|   | BC | 00  | 01  | 11      | 10 |
|---|----|-----|-----|---------|----|
| А |    |     |     |         |    |
| 0 |    | 0 0 | 01  | $(1)^3$ | 14 |
| 1 |    | 1)  | 0 5 | 0 7     | 1  |

C is select  $\therefore$  Do not cross areas of constant C Use I<sub>0</sub> for C = 0 Area Use I<sub>1</sub> for C = 1 Area

|   | C | :=0 |   |  |
|---|---|-----|---|--|
|   | В | 0   | 1 |  |
| А |   |     |   |  |
| 0 |   | 0   | 1 |  |
| 1 |   | 1   | 1 |  |

00

0 0

1 ) 0

BC

А

0

01

01

11

 $\sqrt{3}$ 

0

10

| C=1 |       |   |   |  |  |  |  |
|-----|-------|---|---|--|--|--|--|
|     | B 0 1 |   |   |  |  |  |  |
| А   |       |   |   |  |  |  |  |
| 0   |       | 0 | 1 |  |  |  |  |
| 1   |       | 0 | 0 |  |  |  |  |

## For 2:1 Multiplexer – different select

| Need B&C |
|----------|
| Input    |



A is select  $\therefore$  Do not cross areas of constant A Use I<sub>0</sub> for A = 0 Area Use I<sub>1</sub> for A = 1 Area

| A=0 |   |   |   |  |  |
|-----|---|---|---|--|--|
|     | С | 0 | 1 |  |  |
| В   |   |   |   |  |  |
| 0   |   | 0 | 0 |  |  |
| 1   |   | 1 | 1 |  |  |

| A=1 |             |                       |                                               |  |  |
|-----|-------------|-----------------------|-----------------------------------------------|--|--|
|     | С           | 0                     | 1                                             |  |  |
| В   |             |                       |                                               |  |  |
| 0   |             | 1                     | 0                                             |  |  |
| 1   |             | 1                     | 0                                             |  |  |
|     | B<br>0<br>1 | A<br>C<br>B<br>0<br>1 | A=1       C     0       B     1       1     1 |  |  |

4

Choice of inputs to select lines determines how to partition K-Map

- Select line ABC, then each value is fixed, nothing changes
- Select line = BC, then A value changes
- Select line = C, then AB values change

## **6.5 Decoder**

#### Function

SOP =  $\Sigma$ (minterms) (OR of minterms)

 $POS = \Pi(maxterms)$  (AND of maxterms)

Each output of decoder is a minterm

#### For function in SOP

Use Active Hi output for OR gate

If use Active Lo output – must use invert-OR = NAND

#### For function in POS

Active Lo output – use AND gate

If use Active Hi output – must use invert-AND = NOR

Decoder Example

SOP Form

SOP uses 1's

 $F = \Sigma(1, 2, 4, 6, 7)$ 





POS Form

POS Uses O's

F= Π(0,3,5)

Active Lo





Note that the Functions are equivalent - F=  $\Sigma(1,2,4,6,7) = \Pi(0,3,5)$ 

#### 6.5.1 74156 DECODER

The 74156 is a dual 2:4 decoder

The 2 input lines can be decoded into 4 output lines

An Active low device – when the input is selected low, the decoded output line will be low

Two separate 2:4 decoders may be individual, or connected as a 3:8



The select lines are common

WCBA is sequence for complete address

W' have write to output, this is enable line

C-C' tie together – data

**BA Address** 

#### <u>RAM</u>

Write – write line=0, then data (1 or 0) on data line is clocked into decoder

A<sub>1</sub>A<sub>0</sub> – Same address connected to both decoders

DATA (C-C')- Inverted on decoder b, direct on Decoder a, therefore output of

both each side of a FF will force the FF to change state

# 6.6 Flip Flops / Latch

| S | R | Q | <b>Q</b> <sub>t+1</sub> |
|---|---|---|-------------------------|
| 0 | 0 | 0 | 0                       |
| 0 | 0 | 1 | 1                       |
| 0 | 1 | 0 | 0                       |
| 0 | 1 | 1 | 0                       |
| 1 | 0 | 0 | 1                       |
| 1 | 0 | 1 | 1                       |
| 1 | 1 | 0 | indeterminate           |
| 1 | 1 | 1 | indeterminate           |

| When S= | 0, R=1, | $Q_{t+1} = 0$ | 0 |
|---------|---------|---------------|---|
| When S= | 1, R=0, | $T_{t+1} = 1$ | l |

| Q    | 0   | 1   |                  |
|------|-----|-----|------------------|
| SR   |     |     |                  |
| 00   | 0   | 1/  |                  |
| 01   | 0   | 0   |                  |
| 11   | IND | IND | $\sum$           |
| 10 4 | A   | h\  | $\triangleright$ |

QR Flip Flop Function –  $Q_{t+1} = S + R'Q$ 

#### **6.6.1 General – Flip Flop Types**



#### 6.6.2 Counter

Sequential circuit that goes through a prescribed sequence of states on application of input pulse

Binary counter – counter that follows binary sequence

n-bit counter has n flip flops

only input is count pulse, clock is implied

Output = <u>present</u> state of FF

Counter completely specified by a list of the count sequence – is the sequence of binary states it undergoes

#### **Counter Design**

- **Description Specifications**
- Draw state diagram
  - a. Used to show progressive states of sequence events
  - b. Same as state table
  - c. Present state in circle
  - d. Vector shows next state
  - e. Vector information
    - First character indicates input that causes change of state. Use 1 for clock 2<sup>nd</sup> number(s) show
- Use a 1 a for w/0clock w/0w/0h d w/0w/1С w/0

w/0

- output for present state. Only happens when arriving at next state, not during transition
- Make State Table

0

- a. This contains the same information as the state diagram, and is interchangeable.
- Assign state variables
  - a. Assign each desired output to a FF if have no conditional outputs (no logic)
  - b. Assign each state adjacent so that you do not change more than one state variable for a single change in input - mirror code
  - c. n=# state variables  $\rightarrow 2^n = #$  states
    - Example 4 states =  $2^n \rightarrow n = 2$  state variables, which is the i. number of FFs
  - d. Identify 2 FFs as  $Q_1Q_2$ ,  $Q_AQ_B$ , AB, PQ, depending on author
  - e. Sometimes do not use abc, but numbers
- Make transition table
  - a. This is simply present state next state with state assignments
  - b. Output = present state is use FF for output
  - Determine FF type & assign letters to each
    - a. Make column for input to each FF
    - b. From excitation table for the FF, what is the input to the FF required to make transition from PS to NS. i.e. if PS  $Q_1=1$ , NS  $Q_1=0$
    - c. FF input T<sub>1</sub> must be 1 to cause toggle D FF = Next State

| Inputs | Present           | Next     | Outputs        | FF       |
|--------|-------------------|----------|----------------|----------|
|        | State             | State    |                | Input    |
| w      | $Q_1Q_2$          | $Q_1Q_2$ | Z <sub>1</sub> | $T_1T_2$ |
| 0      | 00 <sub>(a)</sub> | 00       | 0              | 00       |
| 1      | 00 <sub>(a)</sub> | 01       | 0              | 01       |
| 0      | 01 <sub>(b)</sub> | 11       | 0              | 10       |
| 1      | 01 <sub>(b)</sub> | 01       | 0              | 00       |
| 0      | 11 <sub>(c)</sub> | 10       | 0              | 01       |
| 1      | 11 <sub>(c)</sub> | 11       | 1              | 00       |
| 0      | 10 <sub>(d)</sub> | 10       | 0              | 00       |
| 1      | 10 <sub>(d)</sub> | 00       | 0              | 10       |

| PS | NS  | NS  | Out | Out |
|----|-----|-----|-----|-----|
|    | w=0 | w=1 | w=0 | w=1 |
| а  | а   | b   | 0   | 0   |
| b  | с   | b   | 0   | 0   |
| С  | d   | с   | 0   | 0   |
| d  | d   | а   | 0   | 0   |

| PS | Assignment |                 |
|----|------------|-----------------|
| а  | 00         | $\overline{AB}$ |
| b  | 01         | $\overline{A}B$ |
| с  | 11         | AB              |
| d  | 10         | $A\overline{B}$ |

- Draw K-map for FF input @ this present state. Where is the T FF input required from excitation table to get next state.
  - d. Use PS & Input to yield FF input

| $Q_1Q_2$ | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| W        |    |    |    |    |
| 0        | 0  | 1  | 0  | 0  |
| 1        | 0  | 0  | 0  | 1  |

|   | $Q_1Q_2$ | 00 | 01 | 11 | 10 |
|---|----------|----|----|----|----|
| W |          |    |    |    |    |
| 0 |          | 0  | 0  | 1  | 0  |
| 1 |          | 1  | 0  | 0  | 0  |

## Example: 3 bit binary counter

- State diagram
- state Table (T Flip Flops)

Output = Present State =  $Q_2Q_1Q_0$ 

| PS  | NS  | $T_2$ | $T_1$ | T <sub>0</sub> |  |
|-----|-----|-------|-------|----------------|--|
| 000 | 001 | 0     | 0     | 1              |  |
| 001 | 010 | 0     | 1     | 1              |  |
| 010 | 011 | 0     | 0     | 1              |  |
| 011 | 100 | 1     | 1     | 1              |  |
| 100 | 101 | 0     | 0     | 1              |  |
| 101 | 110 | 0     | 1     | 1              |  |
| 110 | 111 | 0     | 0     | 1              |  |
| 111 | 000 | 1     | 1     | 1              |  |
| 000 |     |       |       |                |  |



• Karnaugh Maps

| $T_2$          |           |    |    |                  |    |
|----------------|-----------|----|----|------------------|----|
|                | $Q_1 Q_0$ | 00 | 01 | 11               | 10 |
| Q <sub>2</sub> |           |    |    | $\left( \right)$ |    |
| 0              |           | 0  | 0  | (1)              | 0  |
| 1              |           | 0  | 0  | 1/               | 0  |

$$T_2 = Q_1 Q_0$$

• Draw Circuit

| T <sub>1</sub> |    |    |    |    |
|----------------|----|----|----|----|
| $Q_1 Q_0$      | 00 | 01 | 11 | 10 |
| Q <sub>2</sub> |    |    | (  |    |
| 0              | 0  | 1  | 1  | 0  |
| 1              | 0  | Ź  | 1  | 0  |

 $T_1 = Q_0$ 



 $Q_2$ 

 $T_0$  $Q_1Q_0$ 

00

01

1

1

11

1

1

10

1

1

 $T_0 = 1$ 



#### 6.6.3 Sequence Detector (Random)

- Sequence consists of n bits
- number of states: Mealy = n, Moore = n+1
- Make transition table with added columns of current sequence and desired sequence. Table columns are current sequence, desired sequence, input, present state, next state, output, FF input
- Label current state & desired state
- Write desired sequence under column for all rows
- Place sequence up to this point under correct sequence
- Draw line through as many as useable of current sequence to next state in desired sequence.
- Same number of states must be crossed in both
- Output = 1 when all states are crossed for Mealy. For Moore, add one more state when all states are crossed
- Else, go to 7.

Note: it is easier to make input