
Page | 6-1

Chapter 6 Digital

6.1 Introduction
Digital systems are the language of computers and microprocessor hardware. A basic understanding of

the principals associated with digital systems are presented.

6.2 Binary (Digital) Systems

6.2.1 Number Systems

Decimal numbers

When using numbers, we usually write only the coefficient and let the position indication the power of

10. The coefficient range = 0-9 for base 10

Binary numbers

 The coefficient range = 0-1 for base 2

 3 2 1 0
2 101010 1 2 0 2 1 2 0 2 10

Octal numbers

 Octals are simply binary numbers combined into groups of 3 (base 8=23)

 3
88 2 1| 001 12

 The coefficient range for octal numbers is 0-7

3 2 1 0

107392 7 10 3 10 9 10 2 10

Page | 6-2

Hexadecimal numbers

 Hexadecimal numbers are binary numbers that are combined into groups of 4 (base 16 = 24)

 4
1616 2 0 |1010 0A

The range for hexadecimal numbers is 0-F.

Hex # Decimal Equiv Hex # Decimal Equiv

0 1 8 9

1 2 9 10

2 3 A 11

3 4 B 12

4 5 C 13

5 6 D 14

6 7 E 15

7 8 F 16

Page | 6-3

Arithmetic

Arithmetic rules for all bases have the same basic set of rules.

Addition

111

101

1100

 Subtraction

111

101

010

 Multiplication

111

101

111

000

111

100011

Decimal to Binary Equivalence

0 0000 5 0101

1 0001 6 01101

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

Page | 6-4

6.2.2 Binary System Wiring

Equivalent Names

 5V = 1 = high = True = on = closed

 0V = 0 = low = False = off = open

Resistors

Pull-up – from power source –

 2.2KΩ

Current limiting – in series with load

 330Ω

Switch

When switch = open, output = 1 (True)

When switch = closed, output = 0 (False)

Called an inverting switch

2.2kΩ

output

5 Volts

switch

Transistor

Simply a digital switch with an electrical

input (inverter)

When base switch = off, output = 1

(True)

When base switch = on, output = 0

(False)

2.2kΩ

output

330Ω

5V

Page | 6-5

Output – LED

Generally connected to ground

Use current limiting resistor

LED Long leg is the ground

This is a common cathode arrangement.

A common anode would have inverted

diodes

330Ω

5 Volts

330Ω

TTL

 Standard Arrangement

 5V Power, VCC, on upper right pin

 Ground on lower left pin

 Notch at top

a1
1

a2
2

3
a3

4
a4

b1

b2

b3

b4

14

13

12

11

a1
5

a2
6

7
a3

b1

b2

b3

10

9

8

5 volts

Problem:

Wire a switch circuit with an LED connected to the output pin.

Page | 6-6

6.2.3 The Huntington Postulates

Required entities to define an algebra:
A defined group of coefficients (R, N, Q, Z [0,1]), Real Natural, Complex Binary

A defined group of operators and a table which defines how each operator works.

A defined group of axioms or postulates (unproven theorems) from which new theorems,

lemmas, corollaries, and propositions may be constructed.

[0,1] = B (coefficients)

OR AND NOT

For all x.y elements of group B: for each operator

P1 (a) x y B (b) *x y B (closure) only 1 or 0

P2 (a) 0x x (add Identity, I=0) (b) *1x x (multiply Identity, I=1)
P3 (a) x y y x (b) * *x y y x (commutative)

P4 (a) *() (*) (*)x y z x y x z (b) (*) ()*()x y z x y x z

(distributive)

P5 (a) 1x x (b) * 0x x (complement, unique)
P6 (a) B contains at least 2 distinct elements

Useful theorems: listed in pairs that have correspondence – duality – every expression is valid if
operator and identity elements are changed. To find the dual, exchange + to * and 1 to 0.

T1 (a) x x x (b) *x x x
T2 (a) 1 1x (b) *0 0x

T3 (a) ()x x (involution)

T4 (a) () ()x y z x y z (b) () ()x yz xy z (associative)

DeMorgan’s Theorem – complement function by interchanging AND & OR operators and
complementing each literal

T5 (a) ()x y x y (b) (*)x y x y

T6 (a) x xy x (b) ()x x y x (absorption)

T7 (a) x x y x y (b) ()x x y xy

Operator Precedence

Parentheses ()
Not
AND
OR

Complement – take dual and complement each literal

+ 0 1

0 0 1
1 1 1

* 0 1

0 0 0
1 0 1

~

0 1
1 0

Page | 6-7

6.2.4 Basic Digital Gates

NAND

X

Y

Z

F=(xyz)’

And Invert

XOR

F=x’+y’+z’ = (xyz)’
x
y
z

Invert Or

NOR

X

Y

Z

F=(x+y+z)’

Or Invert

XAND

F=x’y’z’=(x+y+z)’x

y
z

Invert And

A one input gate acts like an inverter

To use NAND requires Sum of Products (SOP) form

To use NOR requires Product of Sums (POS) form

Page | 6-8

6.3 Karnaugh Maps

Definitions:
Literal a variable of the problem
Don’t Care Output values for which no value is necessary (situations that never occur, or if

they do, can be ignored
SOP Abbreviation for Sum of Product
POS Abbreviation for Product of Sum
Reflected Code A binary code which has the property that the codes following every 2n-1 codes

are the reflection of the first 2n-1 codes in all bits except the most significant. The
MSB of the first 2n-1

 is a zero, and the MSB of the next 2n-1
 codes is a 1.

Example
Binary Code Reflected Code

00 00

01 01

10 11

11 10

PURPOSE:

A method of realizing a function in either of the two standard forms such that the number and

complexity of terms in the function is minimal.

Construction:

 Draw a square or rectangular figure allowing 2n squares (for a problem with n variables).

 The table should be drawn so that there are 2x rows and 2y columns where x y n .

 Label the rows and columns with reflected code from left to right and top to bottom.

 Fill in each square of the map with its corresponding truth table function value.

Simplification:

 Circle the largest contiguous binary (2w, w n) group of 1’s for SOP (0’s for POS) which is
rectangular or square

 Consider all the edges of the map to be physically adjacent.

 Each circled block of 1’s (0’s) corresponds to one SOP (POS) term. The term is extracted by
observing which literals do not change for the block. These can be complemented to create the
POS terms using 0’s. The literals are then AND’ed (OR’ed) together to realize the function.

 Finally, each term, which corresponds to each rectangular block, is OR’ed (AND’ed) together to
realize the function

 Each 1 (0) in the map must be circled at least once to realize the function. (Sometimes there is
more than one way to do it).

 Additional Rule for Don’t Cares: It is not required that don’t cares be circled, but treat them as 1
(0) if it will help with minimization.

Page | 6-9

6.3.1 Construction / Simplification of Karnaugh Maps:

Example 1:

()(')

AB A B

A B A B

Example 2:

A B

A B

Example 3:

()(')

A B AB

A B A B

 Example 4:

()()

A B C BC AC

A C A BC

Eliminate Races - Overlap

(SOP)F A C BC AB AC

A B F

0 0 0
0 1 1
1 0 1
1 1 0

 B
A

0 1

0 0 1

1 1 0

A B F

0 0 1
0 1 1
1 0 1
1 1 0

 B
A

0 1

0 1 1

1 1 0

A B F

0 0 1
0 1 0
1 0 0
1 1 1

 B
A

0 1

0 1 0

1 0 1

A B C F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

 C
AB

0 1

00 0 1

01 0 1

11 1 1

10 1 0

 C
AB

0 1

00 0 1

01 0 1

11 1 1

10 1 0

Page | 6-10

Example 5:

(0,1,3,4,6,7) (2,5)F (0,1,3,4,6,7)F (2,5)F

()() ()

(SOP)

F A B C A B C POS

F A B BC AC A C

 (SOP)F B C A C AB

Eliminate Races

(SOP)F A B A C AB BC AC

 C
AB

0 1

00 1 1

01 0 1

11 1 1

10 1 0

A B C F

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

 C
AB

0 1

00 1 1

01 0 1

11 1 1

10 1 0

 C
AB

0 1

00 1 1

01 0 1

11 1 1

10 1 0

 C
AB

0 1

00 1 1

01 0 1

11 1 1

10 1 0

 C
AB

0 1

00 1 1

01 0 1

11 1 1

10 1 0

Page | 6-11

6.4 Design w/ Multiplexer

Multiplexers are a mixed bag

Designers try to minimize gates good

Do clever things good

Results are not logical bad

Hard to troubleshoot bad

Use multiplexer to show sequence of states

3 level pattern

#1 – multiplexers that determine the next state of registers

#2 – Register that holds present binary state

#3 – Decoder that provides a separate output for each control state

Put “Select” line across top of Karnaugh map

With “C” Select With “A” Select

'

F A B AC BC

F A B AC B C

F A B B C AC

F A B B C AC

0

1

Select C

I AB AB AB

I A B

 0

1

Select A

I B

I C

 C
AB

0 1

00 0 0

01 1 1

11 1 0

10 1 0

 A
BC

0 1

00 0 1

01 0 0

11 1 0

10 1 1

Page | 6-12

Three different implementations of the same function.

A valve header requires the following logic to control its actions:

(2,3,4,6)

(0,1,5,7)

F

For 8:1 Multiplexer

I0

I1

I2

I3

I4

I5

I6

I7

EN

S2 S1 S0

Z

+5V

+5V
+5V

+5V

A B C

F

constants

For 4:1 Multiplexer

Only need

“A” inputs

I0

I1

I2

I3

EN

S2 S1

Z

A

+5V

A’

B C

 B & C are select

Do not cross areas of constant BC

A B C F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 BC
A

00 01 11 10

0 0 0 0 1 1 3 1 2

1 1 4 0 5 0 7 1 6

 BC
A

00 01 11 10

0 0 0 0 1 1 3 1 2

1 1 4 0 5 0 7 1 6

E 0 1 3 2

Page | 6-13

For 2:1 Multiplexer

I0

I1

EN

S0

Z

A
B
A’
B

C

F

Need A&B

Input

 C=0 C=1
 C is select

Do not cross areas of constant C
Use I0 for C = 0 Area
Use I1 for C = 1 Area

For 2:1 Multiplexer – different select

I0

I1

EN

S0

Z
B

C’

A

F

Need B&C

Input

 A=0 A=1

A is select

Do not cross areas of constant A
Use I0 for A = 0 Area
Use I1 for A = 1 Area

Choice of inputs to select lines determines how to partition K-Map

 Select line – ABC, then each value is fixed, nothing changes

 Select line = BC, then A value changes

 Select line = C, then AB values change

 BC
A

00 01 11 10

0 0 0 0 1 1 3 1 2

1 1 4 0 5 0 7 1 6

 B
A

0 1

0 0 1

1 1 1

 B
A

0 1

0 0 1

1 0 0

 BC
A

00 01 11 10

0 0 0 0 1 1 3 1 2

1 1 4 0 5 0 7 1 6

 C
B

0 1

0 0 0

1 1 1

 C
B

0 1

0 1 0

1 1 0

Page | 6-14

6.5 Decoder

Function

SOP = (minterms) (OR of minterms)

POS = Π(maxterms) (AND of maxterms)

Each output of decoder is a minterm

For function in SOP

Use Active Hi output for OR gate

If use Active Lo output – must use invert-OR = NAND

For function in POS

Active Lo output – use AND gate

If use Active Hi output – must use invert-AND = NOR

Decoder Example

SOP Form

SOP uses 1’s

F= (1,2,4,6,7)

S0

A

S1

B

C
S2

O0

O1

O2

O3

O4

O5

O6

O7

EN

0

Active Hi

Sum (OR)

F

S0

A

S1

B

C
S2

O0

O1

O2

O3

O4

O5

O6

O7

EN

0

Active Lo

NAND

F

POS Form

POS Uses 0’s

F= Π(0,3,5)

S0

A

S1

B

C
S2

O0

O1

O2

O3

O4

O5

O6

O7

EN

0

Active Lo

AND

F

S0

A

S1

B

C
S2

O0

O1

O2

O3

O4

O5

O6

O7

EN

0

Active Hi

NOR

F

Page | 6-15

Note that the Functions are equivalent - F= (1,2,4,6,7) = Π(0,3,5)

 6.5.1 74156 DECODER

The 74156 is a dual 2:4 decoder

The 2 input lines can be decoded into 4 output lines

An Active low device – when the input is selected low, the decoded output line will be low

Two separate 2:4 decoders may be individual, or connected as a 3:8

a1
1

O0

O1

O2

O3

7

6

5

4
S1S0

0 0

Y4
Y5
Y6
Y7

a1
1

O0

O1

O2

O3

9

10

11

12

S0

0 0

S1 Y0
Y1
Y2
Y3

B(3)
A(13)

Strobe W’ (2)

Data C (1)

Strobe W’ (14)

Data C’ (15)

The select lines are common

WCBA is sequence for complete address

W’ have write to output, this is enable line

C-C’ tie together – data

BA Address

RAM

Write – write line=0, then data (1 or 0) on data line is clocked into decoder

A1A0 – Same address connected to both decoders

DATA (C-C’)– Inverted on decoder b, direct on Decoder a, therefore output of

 both each side of a FF will force the FF to change state

Page | 6-16

6.6 Flip Flops / Latch

 When S=0, R=1, Qt+1 = 0
 When S=1, R=0, Tt+1 = 1

QR Flip Flop Function – 1tQ S R Q

S R Q Qt+1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 indeterminate

1 1 1 indeterminate

 Q
SR

0 1

00 0 1

01 0 0

11 IND IND

10 1 1

Page | 6-17

6.6.1 General – Flip Flop Types

Characteristic Table Excitation
Table

Characteristic
Equation

Symbol

Circuit

Asynchronous (RS Flip Flop)

S R
t dtQ

't dtQ

tQ t dtQ

S R

0 0
tQ tQ 0 0 0 -

0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1
1 1 0 0 1 1 - 0

0

t dt tQ S R Q

SR

Q

Q
SET

CLR

S

R

R

S

Q

Q`

S R

S R

0 0 1 1 0 0 1 -
0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 0
1 1

 1 1 - 1

1

t dt tQ S RQ

S R

Q

Q
SET

CLR

S

R

R

S

Q

Q`

Synchronous

S R

S R

0 0 0 0 0 -
0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1
1 1 0 0 1 1 - 0

1

0

t tQ S R Q

SR

Q

Q
SET

CLR

S

R

cp

S

R

cp

Q

Q
SET

CLR

S

R

J K

J K

0 0

 0 0 0 -

0 1 0 1 0 1 1 -
1 0 1 0 1 0 - 1
1 1

 1 1 - 0

1t t tQ JQ K Q

J

Q

Q

K

SET

CLR

cp

K

J

cp

Q

Q
SET

CLR

S

R

D

D

0 0 1 0 0 0
1 1 0 0 1 1
 1 0 0
 1 1 1

1tQ D

Q

Q
SET

CLR

D

cp

D

cp

Q

Q
SET

CLR

S

R

T

T

0

 0 0 0

1

 0 1 1

 1 0 1
 1 1 0

1t t tQ TQ T Q

T Q

Q`

Q

Q
SET

CLR

S

R
T

cp

t dtQ 't dtQ tQ t dtQ

tQ tQ

1tQ 1'tQ tQ 1tQ

1tQ 1'tQ tQ 1tQ

tQ tQ

tQ tQ

1tQ 1'tQ tQ 1tQ

1tQ 1'tQ tQ 1tQ

tQ tQ

tQ tQ

Page | 6-18

6.6.2 Counter

Sequential circuit that goes through a prescribed sequence of states on application of input pulse

Binary counter – counter that follows binary sequence\

n-bit counter has n flip flops

only input is count pulse, clock is implied

Output = present state of FF

Counter completely specified by a list of the count sequence – is the sequence of binary states it

undergoes

Page | 6-19

Counter Design

 Description – Specifications

 Draw state diagram
a. Used to show

progressive states of
sequence events

b. Same as state table
c. Present state in circle
d. Vector shows next state
e. Vector information

o First character
indicates input that
causes change of
state. Use 1 for
clock

o 2nd number(s) show
output for present
state. Only happens when arriving at next state, not during transition

 Make State Table
a. This contains the same information as the state diagram, and is

interchangeable.

 Assign state variables
a. Assign each desired output to a FF if have no conditional outputs

(no logic)
b. Assign each state adjacent so that you do not change more than

one state variable for a single change in input – mirror code

c. n=# state variables → 2 #n states

i. Example 4 states = 2n → n = 2 state variables, which is the
number of FFs

d. Identify 2 FFs as Q1Q2, QAQB, AB, PQ, depending on author
e. Sometimes do not use abc, but numbers

 Make transition table
a. This is simply present state – next state with

state assignments
b. Output = present state is use FF for output

 Determine FF type & assign letters to each
a. Make column for input to each FF
b. From excitation table for the FF, what is the

input to the FF required to make transition
from PS to NS. i.e. if PS Q1=1, NS Q1=0

c. FF input T1 must be 1 to cause toggle
 D FF = Next State

PS NS
w=0

NS
w=1

Out
w=0

Out
w=1

a a b 0 0
b c b 0 0
c d c 0 0
d d a 0 0

PS Assignment

a 00 AB
b 01 AB
c 11 AB
d 10 AB

Inputs

w

Present
State
Q1Q2

Next
State
Q1Q2

Outputs

Z1

FF
Input
T1T2

0 00(a) 00 0 00
1 00(a) 01 0 01
0 01(b) 11 0 10
1 01(b) 01 0 00
0 11(c) 10 0 01
1 11(c) 11 1 00
0 10(d) 10 0 00
1 10(d) 00 0 10

a

/ 0w

b

/ 0w

c

d

/ 0w

/ 0w

/ 0w

/ 0w
/1w

Use a 1

for

clock

Page | 6-20

 Draw K-map for FF input @ this present state. Where is the T FF input required from excitation
table to get next state.
d. Use PS & Input to yield FF input

1 1 2 1 2T wQ Q wQ Q 2 1 2 1 2T wQ Q wQ Q 1 2z wQ Q

Start w/ specification – end w/ Boolean expression. Can draw diagram and wire circuit from this.

 Q1Q2

W
00 01 11 10

0 0 1 0 0

1 0 0 0 1

 Q1Q2

W
00 01 11 10

0 0 0 1 0

1 1 0 0 0

Page | 6-21

Example: 3 bit binary counter

 State diagram

 state Table (T Flip Flops)

Output = Present State = Q2Q1Q0

000

001

010

011

100

101

110

111

 Karnaugh Maps

T2 T1 T0

2 1 0T Q Q 1 0T Q 0 1T

 Draw Circuit

PS NS T2 T1 T0

000 001 0 0 1
001 010 0 1 1
010 011 0 0 1
011 100 1 1 1
100 101 0 0 1
101 110 0 1 1
110 111 0 0 1
111 000 1 1 1
000

 Q1Q0

Q2
00 01 11 10

 0 0 0 1 0

1 0 0 1 0

 Q1Q0

Q2
00 01 11 10

0 0 1 1 0

1 0 1 1 0

 Q1Q0

Q2
00 01 11 10

0 1 1 1 1

1 1 1 1 1

Page | 6-22

T0 Q0

T1 Q1

T2 Q2

5V

Page | 6-23

6.6.3 Sequence Detector (Random)

 Sequence consists of n bits

 number of states: Mealy = n, Moore = n+1

 Make transition table with added columns of current sequence and desired sequence. Table
columns are current sequence, desired sequence, input, present state, next state, output, FF
input

 Label current state & desired state

 Write desired sequence under column for all rows

 Place sequence up to this point under correct sequence

 Draw line through as many as useable of current sequence to next state in desired sequence.

 Same number of states must be crossed in both

 Output = 1 when all states are crossed for Mealy. For Moore, add one more state when all states
are crossed

 Else, go to 7.

Note: it is easier to make input

