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8.1 Introduction 
Signals and waveforms are not normally part of the study for electric machines. However, with the growing amount 

of electronic control and with distortion on the power line from switched mode power supplies, the waveform is often 

complex. Therefore, this chapter is provided as a reference to assist with those challenges. 

Signals that are encountered can be a constant, direct current (DC), they can be repetitive, alternating current (AC), 

or they can be short term, transients. The circuit elements respond differently to each type signal. This chapter will 

address waveforms and tools to analyze their impact on systems performance. The time domain signal response or 

solution contains all the components. 

 ( ) ( ) cos( )
t

y t F I F e t  


     

8.3 Transients 
Transients are waveforms that exist for a short period of time. Waveforms are determined by the circuit elements. 

Since there are only three elements, the most complex circuit is a second order. The characteristic solution for a 

systems circuit is the time varying equation that describes the exponential decay after a signal is applied. The 

variable, y, can represent either current or voltage. 

 ( ) ( ) cos( )
t

y t F I F e t  


     

where 

F = final value (t=∞) 

I = Initial Value (t=0) 

τ = time constant 

1
LC

 
 

 

8.3.1 First Order Transients 

First order systems are very common, since they are the model of a simple system. First order systems have a resistor 

and either a capacitor or an inductor. 

 

First Order Circuits 

 RC or RL 

Form:  

 

 

 

  

 

Characteristic Solution 

 Response to a step input (DC) 

 ( ) ( )
t

y t F I F e


     

For Capacitor: 
dv

i C
dt

  

di
v L Ri

dt
 

dv v
i C

dt R
 
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Voltage does not change instantaneously 

Open circuit under DC conditions 

Capacitor discharges to ( ) 0CV    

Initial voltage = source voltage 

For Inductor: 
di

v L
dt

  

Current does not change instantaneously 

Short circuit under DC conditions 

Inductor dissipates to ( )LI I   

Initial current = source current 

Process: 

Find τ  

 
-1 1

time constant=  or /

 time for exponent to be e
e

RC L R 

 
 

 use equivalent circuit w/o source to get RC or RL (Thevenin Impedance)  

 deactivate all the sources and replace with internal Z 

 reduce to single equivalent RC or RL 

Find y(0) 

 use circuit (KVL) w/ element as source 

Find y(final) 

 use circuit (KVL) w/ element as limit 

Plot: 

 Initial slope = 
F I




 

 Transfer function = 
response

excitation
=

output

input
 

 

 

8.3.2 RL Circuits 

Standard calculus form 

 o

di
V L Ri

dt
   

Inductor is short circuit in final state. 

0( ) 0i L   

( ) o
f

V
i L

R
  

VO
R

t=0

i

L
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L

R
    

General solution 

( ) ( )
t

y t F I F e


      

Current solution 

(0 )
t

o oV V
i e

R R



     

(1 )
Rt

o L
V

i e
R



   

Sec

i

oV

R

di
L

dt

L

R
 

 

 

8.3.3 RC Circuits 

Standard calculus form 

 
dv v

i C
dt R

   (calculus form) 

Capacitor is open circuit in final state. 

i, vc cannot change instantaneously 

0( ) ov C V  

( ) 0fv C   

RC   

General solution 

( ) ( )
t

y t F I F e


      

Voltage solution 

( )
t

F I Fv V V V e


     

t

c ov V e 


  

vo 

R

C
t=0 i
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8.9 RLC System Response 

8.9.1 RLC Equations 

The three elements, RLC can be arranged in series or its dual parallel. This is a second order system. The analysis of 

the circuit can be made in many domains. Typically the time domain is the starting point. However, the Calculus 

required makes the mathematic interpretation difficult. For that reason numerous transforms are used. The math of 

the transforms will not be developed, but the correspondence is apparent from the table. The duality of the circuits is 

intriguing. 

Function Series Parallel 

Reference Same current through all elements Same voltage across all elements 

Diagram 

R L C
 

R L C

 

Fundamental 2

2

1
( )

d q dq
v t L R q

dt dt C
    

2

2

1 1
( )

d d
i t C

dt R dt L

 
     

Time 1
( )

di
v t L Ri idt

dt C
     

1
( )

dv
i t C Rv vdt

dt C
     

LaPlace 1
( ) ( ) ( )V s Ls R I s

Cs
    

1 1
( ) ( ) ( )I s Cs V s

R Ls
    

Sinusoidal 

Steady State 
1

( ) ( ) ( )V j j L R I j
j C

     


 
1 1

( ) ( ) ( )I j j C V j
R j L

     


 

 

Several observations can be made about the relationships. 

d
s j

dt
    

1 1
dt

j s
  

 

sec

V
c

Vo 

RC 
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'
dq

q i
dt

   '
d

v
dt

 


  

8.9.2 System Response 

The system response is the solution to the second order equation. 

( ) ( ) cos( )
t

y t F I F e t  


     

Time constant is the time it takes for a signal to settle so that the exponential decay. 

time constant 
L

RC
R

     

8.9.3 Characteristic Transfer 

Transfer functions are often used as a model for a system.  

Function Series Parallel 

Transfer 

function 
( )

( )
( )

I s
Y s

V s
  

( )
( )

( )

V s
X s

I s
  

Characteristic 1
( )

1
Y s

Ls R
Cs



 

 
1

( )
1 1

Z s

Cs
R Ls



 

 

Standard form 

2

/
( )

1

s L
Y s

R
s s

L LC



 

 
2

/
( )

1

s C
Z s

s
s

RC LC



 

 

Resonance 

2 2

0

/
( )

s L
Y s

s s


 
 

2 2

0

/
( )

s C
Z s

s s


 
 

 

8.9.4 Resonance 

Frequency is inversely related to time. Angular frequency is one complete revolution of cycle of the frequency. 

 2 f   

Resonance is a very significant concept that may be a boon or ban to electrical systems. Resonance is the frequency 

where the magnetic (or inductor) energy equals the electric (or capacitor) energy. 

0

1

LC
   

Since the energies are balanced, it flows from one to the other resulting in a sinusoidal frequency. The natural 

frequency is the oscillation determined by the physical properties. Resonant frequency is a created oscillation that 

matches the natural frequency. Resonance is the frequency at which the input impedance is purely real or resistive. 

The frequency response has a roll-off on either side. The transition is 

called the cut-off frequency. 

2

0 cL cH    

Bandwidth, Δω, is the range between the upper and lower cut-off 

frequencies. The bandwidth is also called the pass band or bandpass. 
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cH cL   

0
2

cL


     

0
2

cH


     

Quality factor or selectivity is the sharpness of the peak at resonance.  

0Q





 

 

Damping is the effect of resistance on the rate that a signal is stabilized to steady state. Undamped implies that there 

is no resistance, R=0. The damping coefficient is dependent on the natural frequency and is inversely proportional to 

twice the quality factor. Some authors use the symbol alpha, α, rather than zeta, ς. Note this is also the real term of 

the LaPlace, σ. 

0 actual damping

2 critical damping2 /

R

Q L C


     

The range of values for the camping coefficient reflects how quickly the waveform will settle and whether it will 

overshoot. Under-damping results in oscillations or ringing, over-damping results in a slow exponential approach to 

stability, critical-damping is the transition between oscillations and exponential. 

 1  under-damped = oscillation     

 1  critical-damped = transition    

 1  overdamped = exponential    

The relationship between the various factors can be described in terms of the quality factor. 

0 0

2
Q

 
 
 

 

Damped resonance, ωd, is a shift from the resonant frequency caused by the damping. 

2 2 2

0d    

The root of the characteristic equation has the real part as damping coefficient and the imaginary part as the damped 

resonance. For the second order, there are two roots.  

1,2 ds j     

 

8.9.5 Series Parallel Duality 

Comparison of the standard form and the resonance equation reveal the duality of impedance and admittance. The 

symmetry of the duality resolves to a reciprocal form at resonance. 

Function Series Parallel 

Quality factor X
Q

R
  

R
Q

X
  

Quality factor 1 L
Q

R C
  

C
Q R

L
  
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8.9.6 First Order 

A first order system has a resistor and either a capacitor or inductor. Therefore, there is no oscillation. However, there 

is still a cut-off frequency that is the inverse of the time constant.  

1 1
( ) 0 cR j

C RC
        Time Constant = RC 

2( ) ( ) 0 c

R
L j R j

L
        Time Constant = 

L

R
 

 

End of chapter 
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8.10 Exemplars 
An exemplar is typical or representative of a system. These examples are representative of real world situations. 

Problem 1 

 
Consider the circuit shown below. R1 and R2 are 5Ω resistors. R3 is a 10Ω resistor and R4 is a 15Ω resistor. Z1 is a 

20μF capacitor, and V1 is a 120V source.  The time constant of the circuit is most nearly 

 

Z1

R1 R3

R2

R4

AC

 

 

(A) 85 μS 

(B) 138 μS 

(C) 550 μS 

(D) 400 μS 

 

 

SOLUTION: 

Redraw the circuit to make it easier to see 

 

Z1R1

R3

R2

R4

 
 

The resistances can be combined to determine the equivalent resistance of the circuit. 

 

 4 3 1 2( // )eqR R R R R    

 15 10 (5 // 5 )eqR       

 25 2.5 27.5eqR       

 

The time constant of a RC circuit is 

   27.5 20 550eq eqR C F S       

 

The answer is (C) 
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Problem 2 
 

Consider the circuit shown in the problem above, and recreated below.   R1 and R2 are 15Ω resistors. R3 is a 20Ω 

resistor and R4 is a 15Ω resistor. Z1 is a 20mH capacitor, and V1 is a 120V, 60Hz source. The switch has been 

closed for a significant period of time. The voltage across the inductor is most nearly. 

Z1

R1 R3

R2

R4

AC

 

 

(A) 25.455° 

(B) 10.580° 

(C)  50.7-60° 

(D) 61.890° 

 

SOLUTION 

Impedance of the Inductor Z1  

 1 2 60(20 ) 7.54Z j mH j    

Redraw with all impedances 

R1=15Ω

R2=15Ω

R3+R4

20Ω + 15Ω=35Ω
120V

60Hz

Z1=j7.54Ω

I

1

A

 

 3 4 1 35 7.54AR R R Z j     
 

 
15 // 10.6 0.664B AR R j    

 

 

 1

120( ) 120 (10.6 0.664 )
49.73 1.822

( ) (25.6 0.664 )

B
A

B

R V j
V j

R R j

 
   

  
 

 
1

1

1

( ) (49.73 1.822 )( 7.54 )
1.83 10.31 10.5 79.94

( ) (35 7.54 )

A
Z

A

V Z j V j
V j V V

R Z j

 
     

  
 

 

The answer is (B) 
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Problem 3 
 

What is the time constant of the figure shown? 

0.2μF

3MΩ

12V

 

 

SOLUTION: 

The time constant of an RC circuit is 

   6 63 10 0.2 10

0.6 seconds

RC





  



 



  PAGE 12 

Problem 4 
 

In the figure below, the switch has been open for a significant period of time and is closed at t=0. What is the current 

in the capacitor at t=0+? 

0.3μF

6MΩ

12V

. 

 

SOLUTION: 

The capacitor, at t=0+, acts as a short circuit. The current through the capacitor then is determined by the voltage and 

the resistance 

 
6

60

12
2 10

6 10
c t

V V
i A

Z



 
   

 
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Problem 5 
In the figure below, the switch has been open for a significant period of time, and is then closed at t=0. What is the 

current through the two capacitors at t=0+? 

10V

75Ω

0.001F

0.001F 500Ω 200Ω

 

 

SOLUTION: 

If the switch is opened for a significant period of time the capacitor on top of the circuit is charged to 10V, and the 

capacitor in the middle of the circuit is discharged to 0V. At t=0+, the capacitors are modeled as voltage sources with 

the charged voltages. The equivalent circuit is shown below 

10V

75Ω

500Ω 200Ω0V

10V

is

iA iB

i2
 

The voltage across the 500Ω resistor is 0V, so iB=0A. 

KVL on the left loop is 

 

10 (75 ) 0 0

10
0.133

75

s

s

V i V

V
i A

   

  


  

KVL on the right loop is 

  

2

2

10 0 (200 ) 0

10
0.05

200

V V i

V
i A

   

  


 

KCL 

 

2 0

0.133 0 0.05 0

0.133 0.05 0.083

s A B

A

A

i i i i

A i A

i A

   

   

  

 

 

The current through the top capacitor is i2=0.05A 

The current through the middle capacitor is iA = 0.083A 



  PAGE 14 

Problem 6 
 

In the figure below, the switch has been open for a significant period of time. The switch is closed at t=0. Find the 

current through the resistor at t=0+, and at t=1.25s. Find the energy in the inductor at t=1.25s. 

50V

20Ω

8H

 

SOLUTION: 

The current in an inductor cannot change instantaneously, so 

 (0 ) 0Li A   

The general solution for a first order RL circuit is 

 ( ) 1
Rt

L
V

i t e
R

 
  

 
 

 

  20 1.25

8
50

(2) 1
20

2.39

s

H
V

i e

A

  
     



 

The energy in the inductor is found using  

 
21

2LW Li  

 
21

2
(8 )(2.39) 22.85LW H J   
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14.11  
Applications are an opportunity to demonstrate familiarity, comfort, and comprehension of the topics. 

dv v
i C

dt R
 

 


